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Abstract

Background: In recent years, the identification of genetic and phenotypic biomarkers of cancer for prevention,
early diagnosis and patient stratification has been a main objective of research in the field. Different multivariable
models that use biomarkers have been proposed for the evaluation of individual risk of developing breast cancer.

Methods: This is a case control study based on a population-based cohort. We describe and evaluate a
multivariable model that incorporates 92 Single-nucleotide polymorphisms (SNPs) (Supplementary Table S1) and
five different phenotypic variables and which was employed in a Spanish population of 642 healthy women and
455 breast cancer patients.

Results: Our model allowed us to stratify two groups: high and low risk of developing breast cancer. The 9th decile
included 1% of controls vs 9% of cases, with an odds ratio (OR) of 12.9 and a p-value of 3.43E-07. The first decile
presented an inverse proportion: 1% of cases and 9% of controls, with an OR of 0.097 and a p-value of 1.86E-08.

Conclusions: These results indicate the capacity of our multivariable model to stratify women according to their
risk of developing breast cancer. The major limitation of our analysis is the small cohort size. However, despite the
limitations, the results of our analysis provide proof of concept in a poorly studied population, and opens up the
possibility of using this method in the routine screening of the Spanish population.
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Background

The prevention and early diagnosis of breast cancer is
one of the main objectives of cancer research. There are
different models to estimate cancer risk based on genetic
or non-genetic factors; that is, a high or moderate pre-
disposition [1, 2]. In recent years, the extensive use of
genome-wide association studies (GWAS) has led to the
identification of low-susceptibility alleles (SNPs). These
SNPs are usually combined in a polygenic risk score
(PRS), which, in combination with non-genetic factors,
reflects the risk of developing breast cancer [3]. We re-
cently described a low-susceptibility SNP polygenic risk
score of 76 for breast cancer that allows the general
population to be stratified. According to this score,
women at a low and high risk of developing breast can-
cer presented 0.5 and 2.5-fold increased risks, respect-
ively, relative to women in the middle quintile [4].
Previous studies have shown that breast density, familial
antecedents and PRS models composed of 77 [5], 83 [6]
or, more recently, 313 SNPs [7] determine women at
risk. The combination of phenotype and PRS increases
the likelihood of identifying women at risk who require
personalized follow-up, particularly when an individual
exceeds the risk threshold.

Although there are previous studies in Caucasian pop-
ulations, this is the first to combine a PRS of 92 SNPs
with other risk factors, such as mammographic density
(MD), reproductive factors, and family history, in a
Spanish population of 1097 women. The main objective
was to analyze the usefulness of this approach in our
population using a multivariable logistic method based
on the combination of these variables.

Methods

Study design: description of cohorts

The present study was submitted to and approved by
the Clinical Research Ethics Committee (CEIC) of the
Hospital Clinico Universitario de Valencia (Spain) - Sep-
tember 29th, 2016 (2016/169) and July 13th, 2018 (2018/
139) - and was conducted in compliance with the
Helsinki Declaration.

This is case control study compiling full genotyping
and phenotypic data for a cohort recruited between
January 2017 and December 2018 from two sources:
Hospital Clinico Universitario de Valencia and Valencian
Community Screening Programme (General Directorate
Public Health), both in the Autonomous Community of
Valencia (on the Mediterranean Coast). A total of 867
healthy women and 640 breast cancer patients were re-
cruited, with ages in the range of 30-70. Patients had
developed breast cancer in a maximum period of 5 years
prior to data collection, while controls were women who
had not developed breast cancer during the same period.
Those that presented incomplete phenotypic data or
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genotyping failure were excluded from the cohort, which
left 1097 participants consisting of 642 healthy women
and 455 breast cancer cases.

The patient cohort was composed of 45% Luminal A,
20% Luminal B, 20% Her-2 positive and 15% Triple
Negative tumors (approximate percentages).

Data collection

Clinical information was collected for all subjects at re-
cruitment: family history of breast cancer, date of birth,
age, age at menarche, age at menopause, age at first
pregnancy, and mammographic density (MD). Breast
density was assessed from craniocaudal and mediolateral
oblique mammographic projections by an experienced
radiologist with more than 10 years of experience. The
radiologist used the image viewer system (DICOM, from
General Electric GIMD company), classifying MD ac-
cording to Boyd’s semiquantitative scale [8].

SNP selection and genotyping

As in our previous PRS risk analysis [4], we initially se-
lected 76 SNPs from the European Collaborative Onco-
logical Gene Environment Study (COGS) [9]. These
SNPs were significant or showed a trend towards signifi-
cance in our previous validation with Spanish samples.
The correlation of the genetic variants analyzed with
prediction of breast cancer risk in women of the Spanish
population has already been described [4]. In brief, we
analyzed the performance of our PRS using the 76 se-
lected SNPs for breast cancer risk prediction in a Span-
ish case and control cohort. The initial selection was
extended to 123 SNPs by including additional SNPs ob-
tained from the OncoArray Project [10]. Of these, 28
SNPs with an OR close to 1 (0.95 < OR < 1.05) and an-
other 3 SNPs with platform genotyping failure were re-
moved. In this way, a total of 92 SNPs [11-16] were
eventually employed for the current analysis (Online Re-
source 1).

The genotyping method has been described previously
[4]. In short, 10 ml of peripheral blood was collected in
an EDTA tube. One pg of Deoxyribonucleic acid (DNA)
was used for the genotypic analysis (minimum concen-
tration of 25ng/ul). Genotyping was performed with
the Open Array’ Real-Time PCR platform (Life Tech-
nologies) using the Acufill® system and Tagman® probes.
The data obtained were analyzed using Genotyper soft-
ware. Samples with a call rate <0.95 were discarded.
SNPs with a genotyping rate < 0.95 and SNPs generating
errors in control duplicates were also ruled out.

Statistical analysis

Sample size was calculated with a 95% confidence level
(two-tailed test), 80% statistical power, control-case ratio
of 1.3 and initial prevalence of breast cancer of 12%; the
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total number of women necessary for results to be statis-
tically significant was 1138, similar to our case control
cohort (1097). In an initial exploratory univariable
process, the case/control ratio of each risk factor was
compared. During this step, the Wilcoxon-test was used
with a two-sided p-value threshold of 0.05.

The PRS was based on a combined effect of 92 SNPs
statistically associated with breast cancer. This strategy
considers an independent effect of each SNP, ignoring
departures from a multiplicative model [17]. The PRS
was derived for each study subject using the formula:

PRS = S1x1 + 52x2 + ... + Skxk + ... + $92x92

where xk is the number of risk alleles (0, 1 or2) based on
the ploidy of each SNP. The Bk weights are the ORs of
the risk alleles associated with breast cancer described in
Online Resource 1. This strategy has been used in other
studies [5, 6]. The resulting values are normalized using
the median PRS value of the control samples of the
cohort.

In the phenotypic analysis, the phenotypic categories
were transformed into quantitative variables using the
ORs described in the Pollan et al. study [8], except for
family history, the ORs of which were based on the
Pharoah et al. study [18]. In addition, the age of women
(age at diagnosis of patients and age at interview of con-
trols) was grouped into five-year periods, similar to in
other publications [19], which allowed the groups to be
transformed into quantitative variables. The final num-
ber of cases and controls in our cohort was 455 and 642,
respectively.

For the univariable analysis, logistic regression was ap-
plied to each risk factor, which has been adjusted for age
and centre. The coefficients of the model were standard-
ized using the reghelper library of R [20]. Additionally,
the PRS was adjusted for the first five principal compo-
nents. The interaction effect between variables was also
evaluated using the likelihood ratio test (LRT). All ana-
lyses were two-sided and employed a p-value threshold
of 0.05.

To confirm the independence of the PRS and other
phenotypic risk factors, pairwise Spearman correlations
of unaffected controls were evaluated.

For the multivariable study, we performed a logistic re-
gression analysis that incorporated the statistically sig-
nificant variables obtained in the previous steps,
including the interaction terms. Family history and age
at menarche were also included in the analyses, even
though they were not significant, since they are well-
known risk factors. The significance of the final model
was evaluated using the Wald Test [21]. To assess the
accuracy of the final multivariable model, a global
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Hosmer-Lemeshow goodness-of-fit test was performed
using deciles [22].

To evaluate improvement in risk prediction for the dif-
ferent models and risk factors, the area under the curve
(AUC) was evaluated [23] as a measure of discrimination
between cases and control women. This calculation was
performed using the pROC [24] library of R. To avoid a
possible overfitting of the model, the 95% Confidence
Interval (CI) of the AUC was assessed using a cross val-
idation strategy [25]. This step was based on the calcula-
tion of AUC in 1000 permutations using a random
selection of 90% of women as a training set and the
remaining 10% as a test set.

Finally, women were stratified into deciles based on
their final individual risk factor, obtained from the mul-
tivariable model. The ORs of extreme deciles were evalu-
ated using logistic regression with a reference range of
40-60%.

Based on the characteristics of our cohort, the final in-
dividual risk factor proposed in this study describes the
relative risk of women in the Spanish population of suf-
fering breast cancer in a maximum period of 5 years.

Results

Association of phenotypic risk factors with breast cancer
Age is one of the most important risk factors of breast
cancer [26]. To ensure that our analysis was not affected
by any bias or confounding effect associated with this
risk factor, the distribution of cases and controls was
compared using the Wilcoxon test, with no significant
differences being detected (p-value of 0.27). The median
age of our cohort was 51 years old, with a range of 30
and 70 years in the extreme deciles (Table 1).

The global phenotypic risk factors after comparison
between cases and controls in our cohort are detailed in
Table 1. Differences between cases and controls in age
at menarche and familial antecedents were not statisti-
cally significant, with p-values of 0.061 and 0.34,
respectively.

Mammographic density presented a clear, statistically
significant relationship with breast cancer, with an OR of
146 (95% CI: 1.21-1.71) and a p-value of 1.64E-7. The
main differences between controls and cases were concen-
trated in the extremes, with respective proportions of 15%
versus 11% in the first category (MD 0-10%) and 10% ver-
sus 22% in the last category (MD > 75%).

In our cohort, a higher age at first delivery was associ-
ated with an increased risk of development of breast
cancer, while age at menarche did not have a statistically
significant effect, with p-values of 0.03 and 0.061, re-
spectively. Age at first delivery was associated with an
OR of 1.15 (95% CI: 1.02—1.31), and the most marked
differences were seen with advanced maternal ages (over
34 years), with a proportion of 11% versus 8% among
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Table 1 Phenotypic and genotypic baseline characteristics of cases and controls in our Spanish cohort

Risk Factor Category Description Number % Number % Median SD Median SD OR ORCl P-value
Controls Controls Cases Cases Control Control Cases Cases 95%
Age 0 30-35 years 28 4,36 16 3,52 51 8,18 51 8,14 1,  079- 0,27
1 35-40 years 58 9,03 28 6,15 05 113
2 40-45 years 84 13,08 63 13,85
3 45-50 years 138 215 115 25,27
4 50-55 years 158 24,61 86 189
5 55-60 years 113 17,6 94 20,66
6 60-65 years 47 7,32 37 8,13
7 > 65 years 16 249 16 3,52
Breast Density 0 From 0 to 10% 99 1542 51 1M21 2 1,2 3 13 1,  1.21- 1,64E-
1 From 11 to 25% 116 18,07 53 11,65 46171 o7
2 From 26 to 50% 185 28382 116 2549
3 From 51 to 75% 181 28,19 133 29,23
4 Greater than 75% 61 9,5 102 2242
Age at first 0 Less than 20 years 33 514 23 505 2 14 2 146 1, 1.02- 0,03
delivery 1 From 20 to 24years 165 257 104 2286 15131
2 From 25 to 29 years 203 31,62 107 23,52
3 From 30 to 34 years 106 16,51 101 22,2
4 Greater than 34 years 56 8,72 50 10,99
5 Nulliparous 79 12,31 70 15,38
Age at 0 Less than 46 years 97 1511 47 1033 2 14 3 1,13 1, 1.72- 2,20E-
menopause 1 From 46 to 50 years 147 229 102 2242 % 224 16
2 Greater than 50 years 110 1713 71 156
3 Premenopause 87 13,55 212 46,59
4 Menstruating 201 31,31 23 497
Age at 0 Equal to or greater 34 53 34 747 2 1,21 3 12 0, 078 0,061
menarche than 15 years 89 1.04
1 14 years 115 1791 85 18,68
2 13 years 178 27,73 100 21,98
3 12 years 140 21,81 110 24,18
4 Less than 12 years 175 27,26 123 27,03
5 Null 0 0 3 0,66
Family 0 No affected relative 468 729 308 6769 0 1,16 0 123 1, 093- 034
antecedents 1 Afirstdegree relative 52 8] 43 945 05 119
diagnosed with breast
cancer at age 50 years
or older
2 A first-degree relative 25 3,89 18 3,96
diagnosed with breast
cancer when younger
than 50 years
3 1 affected second- 90 14,02 79 17,36
degree relative
4 2 affected first- 4 0,62 5 11
degree relatives
5 2 affected second- 1 0,16 2 0,44
degree relatives
6 3 or more affected 2 031 0 0

relatives
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Table 2 Age-adjusted AUC for univariable and multivariable models

Model Median AUC 95% Cl AUC P-value
Breast Density 0.60 0.54-0.66 2.17E-03
Age at first delivery 0.54 048-0.60 1.49E-01
Age at Menopause 0.64 0.58-0.70 5.40E-09
Familial Antecedents 0.52 047-0.58 6.45E-01
Age at Menarche 0.53 048-0.59 2.80E-01
PRS92 062 0.56-0.66 3.64E-03
Multivariable model without interactions 0.74 0.71-0.77 220E-16
Multivariable model with interactions 0.8 0.77-0.83 220E-16

cases and controls, respectively. In terms of age at me-
narche, the OR was 0.89 (95% CI: 0.78-1.04). Another
reproductive factor we have considered in this study was
menopause status, which was associated with an OR of
1.96 (95% CIL: 1.72-2.24) and a p-value <2E-16. The
greatest difference between cases and controls was ob-
served in the premenopausal category, with values of 46

and 13%, respectively. Regarding family history, cases
showed a slightly stronger trend towards more breast
cancer antecedents in first- and second-degree family
members than controls; however, the logistic regression
based on this quantitative variable was not statistically
significant, with a p-value of 0.34.The interaction terms
identified in our analysis as statistically significant and

OR

5% 10% 20%

logistic regression

deciles

Fig. 1 Odds ratios by decile of polygenic risk score, estimated in the Spanish population using 92 SNPs (PRS92). The PRS were converted to
deciles and the 40-60% range was used as a reference. Odds ratios and 95% confidence intervals (error bars) were estimated using

80% 90% 95%
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included in the multivariable model were age with mam-
mary density and age with menopause status, with p-values
of 0.004 and 2E-16, respectively. Indeed, the relation be-
tween both phenotypes and age has been the subject of
study in the field of breast cancer for some time [27-29].

The discriminative power of each phenotypic risk factor
was compared using ROC curve analysis generated by 10-
fold cross-validation (Table 2). The results were concord-
ant with the univariable logistic regression, where age at
menarche and family history did not present significant
trends and the most discriminant phenotypic variables
were menopause status - with an AUC of 0.64 (95% CI:
0.58-0.70) - and mammographic density - with an AUC
of 0.60 (95% CI: 0.56—0.66) (Table 2).

Association of PRS92 with breast cancer

The PRS based on 92 SNPs presented an OR per 1 stand-
ard deviation (SD) of 1.41, with a 95% CI of 1.24—1.61 and
a p-value of 6.30 x 10 %, For women in the lowest quintile
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(5%), the PRS distribution presented an OR of 0.38 (95%
CI: 0.22-0.63; p-value = 0.0026) with respect to women in
the middle quintile (40-60%). On the other hand, the
highest quintile (95%) of PRS distribution exhibited an OR
of 1.87 (95% CI: 1.16 3.08; p =0.036) (Fig. 1). The x-axis
corresponds with the different deciles and the y-axis re-
flects the OR using the 40-60% range as reference. The
discriminative accuracy of PRS92 was calculated using the
area under the curve (AUC). PRS92 (adjusted by age) and
the first five principal components presented a discrimina-
tive power of 0.62 and a 95% CI of 0.56—0.66 (Table 2).
This predictive performance range was one of the most
discriminant variables, along with breast mammographic
density (0.60) and menopause (0.64).

Multivariable model for breast cancer stratification

All statistically significant univariable risk factors and
interaction terms were included in the final multivariable
model. Age at menarche and family history were also

Confidence intervals

~

100
|

60

Sensitivity (%)

40

20
|

—— Multivariable Interactions Model
--- Multivariable No interaction Model

100 80 60 40 20 0
Specificity (%)

Fig. 2 AUC-ROC of the multivariable model, with and without interaction terms (blue and pink, respectively). The AUC of the ROC curve of the
final multivariable model with interaction was significantly higher than that of the model without interaction: 0.80 (95% Cl: 0.77-0.83) versus 0.74
(95% Cl: 0.71-0.77). The 95% confidence interval was evaluated using a bootstrap strategy
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Type

. Case
. Control

10
0

Control <10%

Samples

Case <10% Control 10-20%  Case 10-20%  Control 20-40% Case 20-40%  Control 60-80% Case 60-80%  Control 80-90%  Case 80-90%

Deciles

Control >90% Case >90%

Fig. 3 Case and control distribution using the multivariable model with interactions. The risk calculated from the model was categorized in

\

deciles using the 40-60% range as a reference. The distribution of cases and controls are described in red and blue, respectively

incorporated into the model based on the scientific lit-
erature. The Spearman method did not reveal significant
correlations for any other variable (data not shown).

We evaluated the discriminative accuracy of the multi-
variable model with and without interaction terms
(Fig. 2). The median AUC obtained using the interaction
model was 0.80 (95% CI: 0.77-0.83), which was higher
than that for the model without interactions; 0.74 (95%
CIL: 0.71-0.77) (Table 2). This difference was statistically
significant with a p-value of 5.375E-09. These values are
slightly higher than those observed in other previously
published methods [30, 31].

We investigated how individual risk for cases and
controls differed when the final multivariable model
was used. Figure 3 and Table 3 show the ORs and

Table 3 ORs, 95% Cl and distribution of cases and controls in

deciles

Deciles OR OR5% OR95% P-value % Controls % Cases
<10% 0097 0.046 0.184 1.86E-08 9.39 0.64
10-20% 0.209 0.121 0.345 8.12E-07 875 1.28
20-40% 0402 0282 0.570 1.99E-05 2735 820
60-80% 1.803 1313 2481 2.30E-03 884 1112
80-90% 3.071 2057 4.634 531E-06 3.19 6.84
>90% 12900 5.098 23332 343E-07 1.00 9.02

Results obtained using the multivariable model with interactions. The 40-60%
range was selected as a reference

percentages of cases and controls classified by deciles
using the final risk predicted by the multivariable
model with interactions. In the first decile, the OR
was 0.097 (CL: 95% 0.046-0.184) with a p-value of
1.86E-08. This range contained 9% of controls versus
less than 1% of cases. This trend was similar in the
next decile, with 8.75 and 1.28% of controls and
cases, respectively (OR: 0.29; p=8.12E-07). At the
other extreme, in the last decile, OR was 12.9 (CI
95% 5.098-23.332; p =3.43E-07), and the proportion
of cases and control was inversed, with 9% of cases
and 1% of controls. These results indicate the cap-
acity of the multivariable model to stratify women ac-
cording to the risk they run of suffering breast
cancer.

Discussion

In recent years, there have been various proposals for
multivariable models that stratify women who might suf-
fer breast cancer according to their individual risk. Dif-
ferent biomarkers have been analyzed as possible
predictors, including phenotypic and non-phenotypic
markers, and environmental and genetic factors.

One approach to measuring genetic variables is the
polygenic risk score (PRS). This strategy is based on vari-
able numbers of statistically significant low penetrance
variants obtained from large GWAS analyses [5, 32].
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Our study was based on a relatively small cohort of
women adjusted for center of origin in our univariable
and multi-variable models.

Employing a specific PRS based on 92 SNPs we ob-
tained an OR of 1.41 (1.24-1.61) that was consistent
with the results of other published studies of Caucasian
populations using different numbers of SNPs (from 18
to 313) [5, 32-34].

The AUC-ROC was 0.62, with a 95% CI of 0.56—0.66,
which is also in line with the literature and assigns a
range of 0.58 to 0.65 to European populations and one
of 0.53 to 0.64 to non-European populations [35].

Regarding univariable phenotypic risk factor analysis,
the most statistically significant results in terms of dis-
criminant variables were obtained for menopause status
and mammographic density, which once again is con-
sistent with previous studies [28, 29, 36, 37]. Other
reproductive factors, such as later age when giving
birth for the first time and later age at menarche,
have been identified as risk factors for breast cancer
[38]. In our study, a significant p-value of 0.03 and
an OR of 1.15 were identified for the former risk fac-
tor, while the latter was not found to be statistically
significant (p-value = 0.061).

The ORs of the risk factors obtained in our cohort
present differences with respect to those previously re-
ported. The most evident concern the lack of a statistical
significance of family history and age of menarche. How-
ever, the direction (positive or negative) of these well-
established effects and our results are concordant. On
the other hand, the magnitude of OR of mammographic
density was lower than that reported in the literature.
These differences may be due to the low number of
women in our cohort; however, the concordance of the
effect, direction and magnitude of the different ORs of
our population corroborates the validity of our study as
a first proof of concept in a Spanish population.

Additionally, the joint association of our PRS92 with
transformed continuous phenotypic variables, such as
MD, reproductive factors and family history, was exam-
ined in our Spanish population. We did not find any sig-
nificant correlation between genotypic and phenotypic
variables; a multiplicative model would possibly describe
this in greater depth and help to improve breast cancer
risk estimation.

The precision of the multivariable model increased
when we added two statistically significant interaction
terms associated with women’s age: menopause and
mammographic density. Such interactions have previ-
ously been observed, and we detected an increase of
AUC-ROC from 0.74 (95% CI: 0.71-0.77) to 0.80 (95%
CI: 0.77-0.83) (Table 2), a rise that was statistically sig-
nificant and offered a final value slightly higher than
those of other similar multivariable studies [39].
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We were able to stratify the control group within our
model (Fig. 3), in which both extremes showed import-
ant differences. The last decile included 1% of controls
vs 9% of cases, with an OR of 12.9 and a p-value 3.43E-
07. In contrast, the first decile presented an inverse pro-
portion (1% of cases and 9% of controls); in this case,
the OR was 0.097, with a p-value of 1.86E-08. These re-
sults indicate the capacity of the multivariable model to
stratify women according to risk of developing breast
cancer.

In summary, our results indicate that using the multi-
variable logistic model and a combination of genetic,
phenotypic and interaction variables is an effective ap-
proach for stratifying women in the Spanish population
according to individual risk of suffering breast cancer
within a 5-year period, with a capacity similar to that ob-
served in other studies in European and non-European
populations. Due to the nature of our study, different
biases could have affected the precision of the results;
for example, there may have been selection and length
biases. Additionally, the small size of our cohort could
have led to overfitting of the model in terms of risk esti-
mation or the over/under representation of a specific
tumor type. However, in spite of these limitations, our
analysis provides proof of concept in a population that
has not been studied until now. Larger series are neces-
sary in order to confirm our data and initiate the use of
this type of screening method in the Spanish population.

Conclusions

Our results endorse the capacity of the multivariable
model to stratify women according to their risk of devel-
oping breast cancer. Some bias could be present in the
study and could have affected the precision of our re-
sults; however, the analysis provides proof of concept in
a poorly studied population and opens up the possibility
of its use in the routine screening of the Spanish
population.
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